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Motivation and History

Consider a Ricci flow (M, (gt)t∈[0,T )) on a compact manifold M:

∂tgt = −2Rc(gt)

By classical theory (Hamilton, DeTurck, Sesum), there exists a unique
smooth solution on a maximal time interval [0,T ), characterized by

lim sup
t↗T

max
p∈M
|Rc(gt)(p)| =∞

Questions:

Continue flow beyond first singular time?

Compactness theorem?

Regularity and structure theory for weak limits?

Notion of weak solutions?

Existence and uniqueness?
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The 3-dimensional case

Theorem (Perelman, Kleiner-Lott, Bamler-Kleiner)

For any compact 3-manifold (M, g0), there exists a unique Ricci flow
through singularities with initial condition (M, g0).
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The 3-dimensional case (continued)

Further properties:

good compactness and partial regularity theory (in particular, the flow
is given by a smooth compact manifold at almost every time, and is
uniquely characterize by its behaviour on the smooth part)

great topological and geometric applications (Bamler-Kleiner):
I proof of generalized Smale conjecture: Diff(S3/Γ) ∼ Isom(S3/Γ)
I contractibility of the space of PSC metrics: MetPSC(M3) ∼ ∗

Remark: The 3-dimensional theory can be generalized to higher
dimensions assuming positive isotropic curvature (Chen-Zhu, Brendle, H)
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Examples in higher dimensions

Examples of 4-dimensional Ricci flows, whose blowup limits at the
singularity are: Eguchi-Hanson, R4/Z2 (Appleton)

Examples of non-uniqueness of Ricci flow through conical singularities
in dimension n ≥ 5 (Angenent-Knopf)

Examples of Ricci flows in dimensions n ≥ 13 that form type II
singularities, where the scalar curvature is expected to be bounded,
and that are modelled on Ricci-flat cones (Stolarski)

Examples of Kähler-Ricci flows that develop a singularity that cannot
be modelled on any smooth shrinking soliton (Li-Tian-Zhu)
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Theory of Ricci flow in higher dimensions?

Recent developments:

Compactness and partial regularity theory (Bamler)

Proposed notion of weak solutions (H-Naber)

Goals for todays talk:

Give introduction to Bamler’s theory.

Briefly recall approach from H-Naber.

Reconcile the two approaches.
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Recall: Gromov-Hausdorff limits of Einstein metrics

Consider a sequence of Einstein manifolds Rc(gi ) = λigi , where |λi | ≤ 1,
on Mn

i . Then (looking around any choice of base-points pi ∈ Mi ) a
subsequence Gromov-Hausdorff converges to a metric length space:

(Mi , gi , pi )→ (X , d , p)

Under the noncollapsing condition |B(pi , 1)| ≥ v > 0, the volume
measures Volgi converge to Hn

X (Colding), and there is a regular-singular
decomposition

X = R ∪ S ,

such that:

R is an open manifold with a smooth Einstein metric g , such that
(X , d) is isometric to the metric completion of (R, g),

dimS ≤ n − 4 (Cheeger-Naber),

All tangent cones are metric cones (Cheeger-Colding).
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Informal overview of Bamler’s theory

Bamler developed a compactness and partial regularity theory for the Ricci
flow that is comparable to (and implies) that of Einstein metrics.

In particular, he:

introduced a parabolic version of metric spaces called “metric flows”,
and a parabolic version of Gromov-Hausdorff convergence.

proved that every sequence of n-dimensional Ricci flows has a
convergent subsequence that converges to a metric flow X .

under a noncollapsing condition (which is perfectly natural by
Perelman’s monotonicity formula) proved that there is a
regular-singular decomposition X = R∪ S, such that:

I R is a smooth Ricci flow spacetime, and R uniquely determines X ,
I dimS ≤ (n + 2)− 4,
I All tangent flows are (possibly singular) shrinking solitons.
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Heat kernel on Ricci flow background

(M, gt)t∈I a Ricci flow: ∂tgt = −2Rc(gt).

Heat kernel K (p, t; q, s), where p, q ∈ M and s < t in I , is defined by

(∂t −∆gt )K (·, ·; q, s) = 0, lim
t↘s

K (·, t; q, s) = δq.

By duality, as a function of (q, s) it solves the adjoint problem

(−∂s −∆gs + Rgs )K (p, t; ·, ·) = 0, lim
s↗t

K (p, t; ·, s) = δp.

Adjoint heat kernel probability measures: dν(p,t);s = K (p, t; ·, s)dVolgs .
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Important properties of the heat flow

Reproduction formula: If s < t ′ < t then

K (p, t; q, s) =

ˆ
M
K (p, t; ·, t ′)K (·, t ′; q, s)dVolgt′

Sharp gradient estimate: |∇u| ≤ 1 preserved under heat flow.

More precisely, if ut0 = Φt0 ◦ ft0 for some 1-Lipschitz function ft0 , then for
all t ≥ t0 we have ut = Φt ◦ ft for some 1-Lipschitz function ft .

(Here, Φt is the solution of the 1d heat equation with Φ0 = χ[0,∞))
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Metric flows

A metric flow X = (X , t, (dt)t∈I , (νx ;s)x∈X ,s≤t(x)) consists of

a set X (spacetime),

a function t : X → R (time function),

complete separable metrics dt on the time-slices Xt = t−1(t),

and probability measures νx ;s ∈ P(Xs),

such that the reproduction formula and the sharp gradient estimate hold.

Any smooth Ricci flow (M, (gt)t∈I ) can be viewed as metric flow via:

X = M × I ,

t = projection on 2nd factor,

dt = dgt induced metric on time-slices,

ν(p,t);s = adjoint heat kernel measure based at x = (p, t).

Robert Haslhofer (UofT) Ricci limit flows and weak solutions September 2024 11 / 21



Monotone quantities for adjoint heat kernels

Wasserstein distance: dW1(g)(µ1, µ2) = sup|∇f |≤1

´
fdµ1 −

´
fdµ2

s 7→ dW1(gs)(νx ;s , νy ;s) is monotone (McCann-Topping)

Variance: Var(µ) =
´ ´

d2(x , y)dµ(x)dµ(y)

s 7→ Var(νx ;s) + Hns, where Hn = 4 + (n − 1)π2 , is monotone (Bamler)

Roughly speaking, to prove his compactness theorem, Bamler takes a
Gromov-Wasserstein limit of the metric measure spaces at a countable
dense subset of times, and then fills in other times using monotonicity.
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Noncollapsing and partial regularity

N(p,t)(τ) = −
´
M logK (p, t; ·, t − τ)dν(p,t);t−τ − n

2 (1 + log(4πτ))

τ 7→ τN(p,t)(τ) is concave, and gives noncollapsing (Perelman)

Theorem (Bamler)

For any sequence of pointed Ricci flows (Mn
i , gi (t)t∈(−Ti ,0], (pi , 0)), a

subsequence converges to a metric flow X over (− limi→∞ Ti , 0].

If the noncollapsing condition N(pi ,0)(τ0) ≥ −Y0 > −∞ holds, then we
have a regular-singular decomposition X = R∪ S such that:

R is a smooth Ricci flow spacetime, and X is determined by R.

The parabolic ∗-Minkowski dimension of S is ≤ (n + 2)− 4.

All tangent flows of X are (possibly singular) shrinking solitons.
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Characterizations of the Ricci flow

Theorem (H-Naber)

A smooth time-dependent family (M, (gt)t∈I ) evolves by Ricci flow if and
only if for almost every (p, t) the infinite dimensional gradient estimate∣∣∇pE(p,t)[F ]

∣∣ ≤ E(p,t)[|∇‖F |]

holds for all test functions F (B) = f (Bτ1 , . . . ,Bτk ) on path-space.

Here, E(p,t) denotes the expectation with respect to Brownian motion
starting at (p, t) given by

P(p,t)[Bτ1 ∈ U1, . . . ,Bτk ∈ Uk ]

=

ˆ
U1×...×Uk

dν(p,t);t−τ1
(p1) . . . dν(pk−1,t−τk−1);t−τk (pk),

and ∇‖F (B) =
∑k

i=1 Pτi∇(i)f (Bτi , . . . ,Bτk ), where P is stochastic parallel
transport defined via Hamilton’s space-time connection.
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Ricci limit flows and weak solutions

Theorem (Choi-H)

Any noncollapsed limit of smooth Ricci flows, as provided by Bamler’s
precompactness theorem, is a weak solution in the sense of H-Naber.

More precisely, given any noncollapsed Ricci limit flow X , for any regular
point x = (p, t) we have the infinite dimensional gradient estimate∣∣∇pE(p,t)[F ]

∣∣ ≤ E(p,t)[|∇‖F |]

for all test functions F (B) = f (Bτ1 , . . . ,Bτk ) on path-space.

In fact, our argument applies to any noncollapsed metric flow that satisfies
Bamler’s partial regularity and solves the equation on the smooth part.

Corollary (Choi-H)

Every singular Ricci flow (for n = 3, or for n > 3 assuming PIC) in the
sense of Kleiner-Lott is a weak solution in the sense of H-Naber.
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Brownian motion and small sets

Theorem (Kakutani 1944)

A closed set A ⊂ Rn does not get hit by Brownian motion if and only if it
has zero Newtonian capacity. Namely:

Px [Bt ∈ A for some t > 0] = 0 ⇔ CapN(A) = 0.

Newtonian capacity:

CapN(A) = inf

{ˆ
Rn\A

|∇u|2 | u = 1 on A, u → 0 at ∞

}

=

[
inf

µ(A)=1

ˆ
A×A

1

|x − y |n−2
dµ(x)dµ(y)

]−1

This is a great theorem, but one drawback is that it cannot be upgraded
to a quantitative estimate.
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The Benjamini-Pemantle-Peres estimate

Theorem (Benjamini-Pemantle-Peres 1995)

For any closed set A ⊂ Rn, where n ≥ 3, we have

1

2
CapM(A) ≤ P0[Bt ∈ A for some t > 0] ≤ CapM(A),

where the Martin capacity is defined by

CapM(A) =

[
inf

µ(A)=1

ˆ
A×A

|y |n−2

|x − y |n−2
dµ(x)dµ(y)

]−1

the constants are sharp (consider spheres and spherical shells)

the assumption n ≥ 3 is natural, since planar Brownian motion will
always hit with probability 0 or 1 (however, by killing the motion at a
finite time, one can obtain a planar version of the theorem)
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Proof of the BPP estimate – upper bound

Consider the stopping time τ := min{t > 0 : Bt ∈ A}. The distribution of
Bτ on the event τ <∞ is a (possibly defective) distribution ν satisfying

ν(A) = P[τ <∞] = P[∃t : Bt ∈ A].

Now, recall the standard formula P [∃t > 0 : |Bt − y | < δ] = (δ/|y |)n−2.
By first entrance decomposition, this probability is at least

P [|Bτ − y | > δ and∃t > τ : |Bt − y | < δ] =

ˆ
|x−y |>δ

δn−2

|x − y |n−2
dν(x).

Dividing by δn−2 and letting δ → 0, this yieldsˆ
A

1

|x − y |n−2
dν(x) ≤ 1

|y |n−2
.

Hence, we conclude that

CapM(A) ≥
[ˆ

A×A

|y |n−2

|x − y |n−2

dν(x)

ν(A)

dν(y)

ν(A)

]−1

≥ ν(A).
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Proof of the BPP estimate – lower bound

For δ > 0 set hδ(r) = (δ/r)n−2 if r > δ and 1 if r ≤ δ.
Given any probability measure µ on A, consider the random variable

Z =

ˆ
A

1{∃t>0:Bt∈B(x ,δ)}
dµ(x)

hδ(|x |)
.

Clearly E[Z ] = 1. Now, we estimate the second moment:

E[Z 2] = 2E
ˆ
A

ˆ
A

1{∃t>0:Bt∈B(x ,δ) and ∃s>t:Bs∈B(y ,δ)}
dµ(x)

hδ(|x |)
dµ(y)

hδ(|y |)

≤ 2E
ˆ
A

ˆ
A

hδ(|y − x | − δ)

hδ(|y |)
dµ(x)dµ(y)

≤ 2E
ˆ
A

ˆ
A

1{|y−x |≥2δ}

(
|y |

|y − x | − δ

)n−2

dµ(x)dµ(y) + O(δ)

Since P[∃t > 0 : Bt ∈ A] ≥ P[Z > 0] ≥ 1/E[Z 2], we conclude that

P[∃t > 0 : Bt ∈ A] ≥ 1

2
CapM(A).
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Hitting estimate for Ricci flow

The most important step for our proof is the following hitting estimate:

Theorem (Choi-H)

If (M, gt)t∈[t0−2,t0] is a Ricci flow with Nash entropy bounded below, then

P(p0,t0)

[
Bτ hitsSε ∩ P∗(p0, t0, 1) for some τ ∈ (0, 1)

]
≤ Cε2−δ.

Here, the ε-singular set is defined by Sε = {(p, t) : reg(p, t) ≤ ε},
where reg(p, t) := sup{r ≤ 1 : supP(p,t,r) |Rm| ≤ r−2}.
Heuristically, one can of course easily guess the (almost) quadratic
dependence on ε in light of Bamler’s codimension 4 theorem.

A fundamental new challenge for Ricci flow is that the heat kernel
only has upper bounds, but no lower bounds. We compensate for the
lack of lower heat kernel bounds, by making use of the space-time
geometry, in particular heat kernel centers and P∗-parabolic balls.
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Open problems

Existence

Can we construct a weak Ricci flow through singularities?

Existence holds in dimension 3 by Perelman and Kleiner-Lott.

In higher dimensions, given Bamler’s compactness theorem, the key
would be to come up with some suitable approximation scheme.

Uniqueness

Is weak Ricci flow through cylindrical singularities unique?

Weak solutions provide a framework to discuss this question.

Uniqueness holds in dimension 3 by Bamler-Kleiner.

Examples by Angenent-Knopf show that Ricci flow through conical
singularities can be nonunique.

Question motivated by uniqueness of mean curvature flow through
neck singularities proved by Choi-H-Hershkovits-White.
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